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A one-dimensional elastic system with distributed contact under "xed boundary
conditions is investigated in order to study dynamic behavior under sliding friction.
A partial di!erential equation of motion is established and its exact solution is presented.
Due to the friction the eigenvalue problem is non-self-adjoint. Mathematical methods for
handling the non-self-adjoint system, such as the non-self-adjoint eigenvalue problem and
the eigenvalue problem with a proper inner product, are reviewed and applied. The exact
solution showed that the undamped elastic system under "xed boundary conditions is
neutrally stable when the coe$cient of friction is a constant. The assumed mode
approximation and the lumped-parameter discretization method are evaluated
and their solutions are compared with the exact solution. As a cautionary example the
assumed modes approximation leads to false conclusions about stability. The
lumped-parameter discretization algorithm generates reliable results.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Friction-induced vibrations and the accompanying noise are serious problems in many
industrial applications, for example brake systems in automobiles, rail}wheel systems, and
machine}tool/work}piece systems in manufacturing. These various forms of vibrations are
often undesirable not only because of their detrimental e!ects on the performance of the
mechanical systems, but also as a source of discomfort in operating environments. In most
of the previous research related to friction-induced vibrations, low-degree-of-freedom
models have been used in order to explain dynamic stability of friction sliding and stick-slip
vibrations. Despite its simplicity in modelling and analysis, such a system may have
limitations in showing characteristic features of an elastic medium subject to distributed
friction. Especially, in order to investigate a continuum in contact with a large area,
a proper continuous model which can capture dynamic features and its mathematical
method in handling the distributed frictional contacts is required.

In this paper, a mathematical model for a one-dimensional elastic material subjected to
distributed friction contact is established and its dynamic stability is evaluated. Several
discretization methods are evaluated. Assumed-mode methods lead to the general
eigenvalue problem, which includes the non-self-adjoint eigenvalue problem and an
eigenvalue problem using a proper inner product that transforms a non-self-adjoint
problem to a self-adjoint problem. A cautionary example in applying the Galerkin's
discretization method in the low order non-self-adjoint system is revealed. As an alternative
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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Figure 1. A schematic diagram for a one-dimensional elastic medium subjected to distributed friction.
A medium is under "xed end boundary conditions. A frictionless linear bearing is installed on top of a medium so
as to allow axial motions of an elastic medium.
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discretization method a lumped-parameter method is applied and shows its validity in
applications.

2. EQUATION OF MOTION

In the system shown in Figure 1, a linear elastic medium, placed between a moving belt
and a frictionless linear bearing, represents a one-dimensional, undamped, continuous
system in distributed sliding contact. Although a non-constant coe$cient of friction has
been known to be one of the crucial factors for system stability, the friction coe$cient is
assumed to be a constant with respect to relative speed. This situation is worth studying as it
has been shown to be unstable in semi-in"nite media [1, 2] and periodic boundary
conditions [3, 4]. In addition, any parameters having random properties, such as roughness
of contact surface, are not included in order to focus on the e!ects of uniform properties of
materials. Moreover, non-uniformmotions, such as stick-slip motion or loss of contacts, are
not included.

A system composed of a linear elastic medium undergoes axial sliding. The equation of
axial motion for a homogeneous, undamped elastic medium is

A
��

�
(x, t)

�x
#f (x, t)"�

��u
�t�

, (1)

where A"wh is the cross-sectional area of an elastic medium of constant width w (into the
page) and height h, � is the mass per unit length of the elastic material, �

�
(x, t) is the stress

over the cross-section, u (x, t) is the axial displacement, and f (x, t) is the friction force per unit
length. Applying a linear stress}strain relationship, stress is expressed as �

�
(x, t)"E�

�
(x, t),

where E is Young's modulus of the material.
Axial stress accompanies a change in cross-sectional area in an open rod, due to the

Poisson e!ect. Since this system is constrained, there is instead a change in normal stress, �
�
.

Under plane stress, the friction force per unit length due to Poisson's e!ect is given by

f (x, t)"!�w�
�
(x, t)"!�w��

�
#��

�
(x, t)�, (2)

where � is a friction coe$cient, �
�
(x, t) is a contact normal stress, and �

�
is a pre-loaded

normal stress, which should be always less than zero (compression) to generate friction force
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Figure 2. The exact static solution u
�
(x) by changing 	 in the one-dimensional system. Here 	 is in the range of

0)1}1)0 with increments of 0)1. In this example 
"4)0.
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and maintain contact with the sliding rigid body. This distributed friction force contributes
to the axial stresses in the medium through equation (1).

By considering the linear strain-displacement relation, �
�
(x, t)"�u(x, t)/�x, a non-

dimensional equation of motion is obtained as

��uH

�xH
�!


�uH

�xH
#
	"

��uH

�tH� . (3)

The dimensionless parameters used in equation (3) are 
"�w�l/A"��l/h , 	"!�
�
/�E ,

uH"u/l, xH"x/l and tH"t/�(�l�/AE) , where l denotes contact length, and uH, xH and
tH are the dimensionless displacement, co-ordinate and time respectively. For simplicity, the
notation * will be neglected in the following development.

For a typical system subjected to a distributed friction contact a "xed boundary
condition is selected, such that

u (0, t)"u(1, t)"0. (4)

3. EXACT SOLUTION

A good way to handle the constant term in equation (3) is to separate the displacement
into static and dynamic components:

u (x, t)"u
�
(x)#u

�
(x, t). (5)

As such, we "nd

u
�
(x)"!

	l
(e��!1)

(e���!1)#	lx. (6)

Figure 2 depicts the variation in the static solution u
�
(x) for 	 in the range of 0)1}1)0 with

increments of 0)1 under the condition of 
"4)0. As 	 increases, i.e., as normal loads
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Figure 3. The exact static solution u
�
(x) by changing 
 in the one-dimensional system. Here 
 is in the range of

1)0}10)0 with increments of 1)0. In this example 	"1)0.
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increase, or Young's modulus decreases, the non-symmetric static solution along the x-axis
gets larger. Figure 3 provides the trends of static solutions under variations in 
 from 1)0 to
10)0 with increments 1)0 with 	 " 1)0; 
 in#uences the asymmetry of u

�
(x).

Then the term 
	 in equation (3) is eliminated by static solution u
�
(x) in equation (6), and

a dynamic equation of motion in terms of u
�
(x, t) is obtained as

��u
�

�x�
!


�u
�

�x
"

��u
�

�t�
. (7)

The exact solution for the dynamic component of equation (7) satisfying the boundary
condition (4) is then obtained by using the separation of variables method. Thus,

u
�
(x, t)"

�
�
���

�2e������ sin( j�x) �a
�
cos(�

�
t)#b

�
sin(�

�
t)�, (8)

where natural frequencies are �
�
"�( j�)�#
�/4, and a

�
,b

�
are constants determined by

initial conditions. The system is neutrally stable.
The "rst three exact mode shapes, which depend on parameter 
 in equation (8), are

shown in Figure 4. Increasing 
 in#uences the shapes of the unsymmetric free-vibration
eigenfunctions. However, it does not destabilize the system. In other words, 
 a!ects
the mode shapes, which are non-symmetric along the x-axis, and 
 a!ects the natural
frequencies in equation (8). Variations in 
 do not destabilize the dynamic system under
"xed boundary conditions with a constant coe$cient of friction.

4. SELF-ADJOINT AND NON-SELF-ADJOINT SYSTEMS

Numerous systems encountered in structural dynamics are self-adjoint with distinct
eigenvalues. This means that such systems have symmetric properties. A self-adjoint system
has real eigenvalues and eigenfunctions. Moreover, the eigenfunctions are orthogonal to
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each other. However, structural systems which endure aerodynamic forces, friction forces,
and follower forces may lose their symmetries and become non-self-adjoint [5}9]. The
orthogonal relations and the expansion theorem which have been developed on the bases of
self-adjoint properties are no longer applicable to the non-self-adjoint systems.

Many non-self-adjoint systems can be transformed to self-adjoint systems by de"ning
a proper inner product, so that the problem of non-self-adjointedness can ultimately be
handled through similar procedures of the self-adjoint cases [10, 11]. (The techniques
associated with transformations of system properties are presented in the next section.)

Let us consider our eigenvalue problem and the issue of self adjointness. Suppose the
dynamic solution of equation (7) is represented in the form, u

�
(x, t)"�(x)Q(t). Then the

eigenvalue problem is given by

¸�"�, (9)

where the linear operator in equation (9) is de"ned by

¸ ���"!

d�

dx�
#


d

dx
, (10)

with the boundary conditions of

� (0)"�(1)"0. (11)

We introduce the classical de"nition of an inner product between two functions as

� f, g� ���"�
�

f (x)g (x) dx, (12)

where D is the domain of the eigenvalue problem. Then, the operator ¸ has an adjoint
operator ¸H de"ned by

��, ¸��"�¸H�, ��. (13)
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And the original system and its adjoint system can be written as

¸�
�
"

�
�

�
, ¸H�

�
"H

�
�
�
, (14a, b)

where 
�
and H

�
are real or complex eigenvalues corresponding to ¸ and ¸H respectively.

The operator ¸H is called the adjoint operator of ¸ and the set of eigenfunctions �
�

( j"1, 2,2) is said to be adjoint to the set of eigenfunctions �
�
(i"1, 2,2) over the de"ned

classical inner product (12).
A large class of structural dynamic systems with conservative forces are self-adjoint,

which means that ¸"¸H, and the two sets of eigenfunctions are the same for the
corresponding eigenvalues. In such a case orthogonality is expressed as

��
�
, �

�
�"�

�

�
�
�

�
dx"0, iOj, i, j"1, 2,2,R. (15)

By using the orthogonality, coe$cients of any function w(x, t)"��
���

�
�
(x)q

�
(t) can be

written as

q
�
"��

�
,w�"��

�
,
�
�
���

�
�
q
�� . (16)

This is called the expansion theorem for self-adjoint systems.
However, if ¸O¸H, the system is non-self-adjoint, and the orthogonality in equation (15)

does not hold. For the case in which ¸O¸H, multiplying equation (14a) by �
�
, and equation

(14b) by �
�
, and then integrating over the domain D yields

��
�
, ¸�

�
�"�

�

�
�
¸�

�
dx"

��
�

�
�
�
�
dx, (17a)

��
�
,¸H�

�
�"�

�

�
�
¸H�

�
dx"H

� �
�

�
�
�
�
dx. (17b)

Subtracting equations (17) leads to

(
�
!H

�
)�

�

�
�
�
�
dx"0. (18)

Hence, if 
�
OH

�

��
�
, �

�
�"�

�

�
�
�
�
dx"0, iOj, i, j"1, 2,2,R. (19)

This is the biorthogonality of eigenfunctions �
�
and �

�
, which means an eigenfunction of

¸ corresponding to an eigenvalue 
�
is orthogonal to an eigenfunction of ¸H corresponding

to H
�
, where the 

�
is distinct from H

�
. The non-self-adjoint operator ¸ has the same

eigenvalues as the operator ¸H. The general expansion theorem related to non-self-adjoint
systems, called the dual-expansion theorem, is presented in the works by Meirovitch [5]
and MacCluer [10].
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Let us return to the problem of interest. In order to seek the adjoint operator ¸H of this
study, we examine the adjoint operator ¸H de"ned in equation (13):

�
�

�

�¸�dx"�
�

�

��!
d�

dx�
#


d

dx�� dx

"�
�

�

��!

d��
dx�

!

d�
dx�dx

"�
�

�

�¸H�dx, (20)

where the boundary conditions of equation (4) have been accounted for. Thus, the adjoint
operator of this study is

¸H���"!

d�

dx�
!


d

dx
(21)

with zero boundary conditions. The adjoint operator ¸H in equation (21) is di!erent from
the operator ¸ in equation (10). Assuming that dynamic solutions of this study can be
represented by

u
�
(x, t)"

�
�
���

�
�
(x) q

�
(t), (22)

then, by multiplying adjoint eigenfunction �
�
, and using the biorthogonality in equation

(19), coe$cients q
�
(t) are obtained as

q
�
(t)"��

�
, u

�
�"��

�
,

�
�
���

�
�
(x) q

�
(t)�. (23)

Here, the eigenfunctions are

�
�
(x)"�2e	������ sin(i�x), �

�
(x)"�2e������ sin( j�x), i, j"1, 2,2,R. (24a, b)

By multiplying the normalized adjoint eigenfunction, �
�
(x), with equation (9) and

integrating from 0 to 1, an in"nite set of decoupled ordinary di!erential equations is
obtained as

�
�
���

m
��
qK
�
#

�
�
���

k
��
q
�
"0, i"1, 2,2,R, (25)

where

m
��
"��

�
, �

�
�"�

�

�

�
�
�
�
dx"�

��
, (26a)

k
��
"��

�
, ¸�

�
�"�

�

�

�
�
¸�

�
dx"��

�
�
��
"�( j�)�#
�/4��

��
, i, j"1, 2,2,R. (26b)

Consequently, the projection by using the adjoint eigenfunctions in the non-self-adjoint
system yields the set of decoupled ordinary di!erential equations. In addition, it is veri"ed
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that eigenvalues derived from general eigenvalue problems are the same as the exact
solutions derived in the previous section.

5. EIGENVALUE PROBLEM BASED ON A PROPER INNER PRODUCT

The eigenfunctions derived in the previous section are not mutually orthogonal since the
system has a non-self-adjoint operator. However, the &&folklore'' is that a non-self-adjoint
problem can be cast as self-adjoint by using a proper inner product when the problem
possesses a meaningful discrete spectral structure [10]. In this section, the method for
choosing a proper inner product, or equivalently recasting the form of the partial
di!erential equation which enables the system to be self-adjoint, is reviewed. Then this
method is applied to the problem of interest in order to suggest an alternative way in solving
the general eigenvalue problem.

The general second order partial di!erential equation in the form of

p
�
(x)

d�y

dx�
#p

�
(x)

dy

dx
#p

�
(x)y#p



(x)y"0, (27)

with the auxiliary homogeneous boundary conditions

a
�
y(x

�
)#a

�

dy(x
�
)

dx
#a

�
y(x

�
)#a




dy(x
�
)

dx
"0, (28a)

b
�
y(x

�
)#b

�

dy(x
�
)

dx
#b

�
y(x

�
)#b




dy(x
�
)

dx
"0 (28b)

is de"ned on the interval (x
�
, x

�
). This is the Sturm}Liouville problem subject to

homogeneous boundary conditions [11, 12]. Suppose that the coe$cients p
�
(x) and p



(x)

are positive and the p
�
(x), p

�
(x), and p



(x) are twice di!erentiable. Letting

p(x)"e ��
���	�����	����� ��, q (x)"

p
�
(x)p(x)

p
�
(x)

, g(x)"
p


(x)p(x)

p
�
(x)

(29)

and multiplying equation (27) by weighting function p(x)/p
�
(x) , yields

d

dx�p(x)
dy

dx�#�q(x)#g(x)�y"0 (30)

which is a more convenient self-adjoint form. Thus by multiplying equation (27) by the
weight function p(x)/p

�
(x), the system is shown to be self-adjoint.

Returning to the problem of interest, the equation of motion (9) can be transformed to
a self-adjoint system by using the weight function e	��.

Thus, the eigenvalue problem in self-adjoint form is given by

I̧ �"w(x)�, (31)

where

I̧ ���"!

d

dx�e	��
d

dx� (32)

and the weight function is w(x)"e	��.
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The self-adjointedness of operator I̧ is veri"ed by taking the classical inner product (12)
and integrating by parts, such that

��, I̧ ��"!�
�

�

�
d

dx�e	��
d�
dx�dx

"�
�

�

e	��
d�

dx

d�

dx
dx

"��, I̧ ��. (33)

In addition, the positive de"niteness also can be shown from the fact that

��, I̧ ��"!�
�

�

�
d

dx�e	��
d�

dx�dx

"�
�

�

e	���
d�
dx�

�
dx*0 (34)

is always non-negative. It is equal to zero only if �(x) is a constant throughout the domain.
Because of the boundary condition (4), however, this constant must be zero, which would
imply a trivial solution. It follows that the operator I̧ in equation (32) is positive de"nite.
Therefore, the non-self-adjoint operator ¸ described in equation (10) is transformed to the
self-adjoint positive de"nite operator I̧ in equation (32) by applying the weight function
e	��.

Identical results are also obtained by taking the weighted inner product, de"ned as

� f, g�


���"� f (x)g(x)w(x) dx, (35)

where w (x) is weight function. By choosing a weight function w (x)"e	��, we can verify the
self-adjointedness with respect to the weighted inner product as

��, ¸��


"��, ¸��



, (36)

where the operator ¸ is de"ned in equation (10). Hence the terminology &&proper inner
product''. An applied example can be found in Chait et al. [13].

The equation of motion (31) is identical to the equation of axial free motion for an elastic
rod having varying sti!ness e	�� and varying mass distribution e	�� without friction, which
we refer to as an &&exponential rod''.

The discretized equation of motion can be presented by applying Lagrange's formula to
the equivalent &&exponential rod''. Suppose that the solution u

�
(x, t) can be written as a series

u
�
(x, t)"

�
�
���

�
�
(x) r

�
(t), (37)

where �
�
(x) can be any admissible function without loss of generality. The kinetic and

potential energies of a continuous system have integral expressions. The kinetic energy can
be written in the familiar form of

¹(t)"
1

2 �
�

�

e	���
�u

�
(x, t)

�t �
�
dx. (38)
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In a similar expression, the potential energy can be written as

<(t)"
1

2�
�

�

e	���
�u

�
(x, t)

�x �
�
dx. (39)

The natural boundary conditions are of no concern here because they are automatically
accounted for in the kinetic and potential energies. Consider Lagrange's equations for
conservative systems, namely,

d

dt �
�¹

�r�
�
�!

�¹

�r
�

#

�<
�r

�

"0, j"1, 2,2,R. (40)

The equation of motion in discretized form is obtained by

�
�
���

m
��

d�r
�
(t)

dt�
#

�
�
���

k
��
r
�
(t)"0, (41)

where

m
��
"�

�

�

e	���
�
(x)�

�
(x) dx, k

��
"�

�

�

e	��
d�

�
(x)

dx

d�
�
(x)

dx
dx, i, j"1, 2,2,R. (42a, b)

By selecting the set of �
�
(x) as normalized eigenfunction of equation (31) in equation (42),

i.e., �
�
(x)"�2e������ sin( j�x) from the results of the previous section, the discretized

uncoupled equations of motion are obtained. The eigenvalues for this discrete system, which
are 

�
"( j�)�#
�/4, are identical to the exact solution (8).

Equations (38) and (39) can be thought of in terms of the original friction system as
pseudo-energies de"ned via the weighted inner product. The friction and Poisson's e!ects
work into the pseudo-energies through the e	�� terms, resembling &&e!ective'' mass and
sti!ness distributions. As such, the generalized forces normally needed in Lagrange's
equations are accounted for in equation (40).

Thus, it is veri"ed that the system having non-orthogonality in its eigenfunctions is
a minor matter, and it is correctable by projecting under the proper inner product.

6. NON-CONVERGENCE OF GALERKIN'S METHOD: A CAUTIONARY EXAMPLE

The exact solution from section 3 shows that this system's dynamic stability is not
dependent on the system parameters. The system is neutrally stable, behaving like an

undamped vibration system with natural frequencies of �
�
"�( j�)�#
�/4. A change in

	 changes the system's static solution and has no in#uence on the linear stability. With the
addition of modal damping, the eigenvalues will have negative real parts and steady sliding
is expected to be asymptotically stable.

In this section, the assumed mode projection*Galerkin's projection*is applied in the
evaluation of system stability in order to verify the feasibility of applying an approximate
method. Even though the exact eigenvalue solutions have been obtained already in the
previous sections, the application of an approximate discretization method may provide
a cautionary example for its use.

We apply the assumed-mode method to approximate the non-self-adjoint equation (3) as
a set of ordinary di!erential equations. The dynamic response u

�
(x, t) can be represented
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with assumed modes satisfying the geometric boundary conditions and p derivatives in the
partial di!erential equation of order 2p, where p " 1. Here,

u
�
(x, t)"

�
�
���

�K
�
(x)a

�
(t), (43)

where �K
�
(x)"�2 sin( j�x) is chosen as an approximate mode. After projecting with these

assumed modes, an approximate ordinary di!erent equation of motion is

�
�
���

m
��

d�a
�

dt�
#

�
�
���

k
��
a
�
"f

�
, i"1, 2,2R, (44)

where

m
��
"�

��
, k

��
"k�

��
#k�

��
, (45a)

k�
��
"( j�)��

��
k�
��
"

i
g
j
g
k

4
ij
i�!j�

, �i!j �"odd,

0, otherwise,
(45b)

f
�
"

i
g
j
g
k

2�2
	
i�

, i" odd,

0, otherwise,
(45c)

where k� and k� are symmetric and antisymmetric sti!ness matrices respectively.
Focusing on the low-dimensional dynamics, the system can be approximated with

n coupled ordinary di!erential equations. The real parts of the eigenvalues of this system
indicate predicted stability characteristics. The dependency of eigenvalues on parameters by
including two assumed modes is shown in Figure 5. Instability apparently occurs when the
real part of an eigenvalue is positive at the critical condition 
"5)7, accompanied by
a collision between two frequencies. This instability mechanism resembles #utter, and has
been seen as one of possible instability mechanisms, e.g., #ow-induced vibrations [14] and
friction-induced vibrations [15].

However, these results contradict the exact solution since it has no instability mechanism
involving parameter 
, based on the results of section 3. Bolotin [14] had investigated this
&&paradox'' for #ow across a membrane. The work showed non-convergent characteristics in
the assumed mode projections, and gave a theoretical criterion for convergence based on
the linear operator. According to those results, conservative systems with second order
operators are not guaranteed to converge in assumed-mode approximations.

Non-convergence of this eigenvalue problem can be demonstrated by increasing the
number of assumed modes. Figures 6 and 7 show the imaginary and real part eigenvalues
for 3}5 modes respectively. Considering Figure 5 also, the two lowest-frequency modes
interact at 
"5)7, and 
"9)0 for two- and four-mode approximations, but do not interact
for three- and "ve-mode approximations. This shows that the approximated solution by
using assumed mode methods for "nding the smallest interaction value 
 fails to converge
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Figure 5. A non-convergent result: eigenvalues versus 
 in the one-dimensional friction system by applying the
assumed mode method with two modes included. (a) Imaginary and (b) real parts of the eigenvalues versus 
 are
shown. The selected assumed modes are �K
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(x)"�2 sin ( j�x) for j"1, 2.
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Figure 6. A non-convergent result: imaginary parts of the eigenvalues versus 
 by applying the assumed mode
method in the one-dimensional friction system: (a) three modes, (b) four modes, and (c) "ve modes are included. The

selected assumed modes are �K
�
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with an increasing number of modal co-ordinates. This hints at faulty results when applying
the assumed-mode method to this problem. Failure to recognize the poor result can lead to
false conclusions about system stability.
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Figure 7. A non-convergent result: real parts of the eigenvalues versus 
 by applying the assumed mode method
in the one-dimensional friction system: (a) three modes, (b) four modes, and (c) "ve modes are included. The
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�
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The conditions for non-convergence have been shown by checking the matrix
determinant by Bolotin [14]. Consider the convergence of the determinant in equation (44).
Equation (44) can be written as

d�a
�

dt�
#��

�
a
�
#�

�
�
���

b
��
a
�
"0, i"1, 2,2,R. (46)

And the characteristic determinant becomes

�"� (��
�
!)�

��
#�b

��
�"0. (47)

Dividing the ith row by �
�
and the jth column by �

�
, the determinant � can be expressed in

the form

�"��
��
#c

��
�. (48)

According to Bolotin [14] and Kantorovich and Krylov [16], the in"nite determinant
converges if the double series

�
�
���

�
�
���

�c
��
� (49)

converges. The determinant is described as normal when condition (49) converges. By
checking the determinant of equation (44), it diverges with an in"nite number of modes.
Thus it is not a normal determinant.
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Figure 8 presents the exact and approximate eigenvalues based on the proper inner
product versus 
 with "ve assumed modes selected. The low-frequency approximation is
accurate in the eigenvalue calculation. Though there are still slight deviations
from the exact solution in high-frequency eigenvalue approximations, a more accurate
approximation is expected by including more modes. Consequently, a false indication of
instability has been avoided in evaluating the eigenvalues for the self-adjoint representation
of the system.

There do exist investigations into the approximation of non-self-adjoint systems.
Meirovitch and Hagedorn [17] investigated the modelling of distributed non-self-adjoint
systems, such as damped boundary condition models. In using the method of weighted
residuals to produce the approximate solution to the eigenvalue problem, the displacement
of a non-self-adjoint system is ordinarily represented by a linear combination of comparison
functions, i.e., functions that satisfy all the boundary conditions. Because of di$culties in
"nding comparison functions, a more feasible approach involves the construction of an
approximate solution by using combinations of admissible functions, called
quasi-comparison functions, capable of satisfying all the geometric boundary conditions of
the problem [17]. Similar approaches for solving the approximate solutions can be found in
Meirovitch and Kwak [18], and Hagedorn [19]. The proof of Galerkin's method for
non-self-adjoint boundary value problems has been given by Diprima and Sani [20] and
sensitivity analyses in the non-conservative problem by using adjoint variational method
are presented by Prasad and Herrmann [21], and Pedersen and Seyranian [22].

7. A LUMPED-PARAMETER DISCRETIZATION

Since the classical approximation method which relies on the modal co-ordinates may
not be valid, and the convergence of eigenvalues not guaranteed, there is no reason to expect
other discretizations to converge, either. But we investigate the performance of other



Figure 9. A schematic diagram for the undamped, lumped-parameter model subjected to distributed friction.
Fixed end boundary conditions are applied.
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discretizations in the hope that those di$culties are overcome, so that the discretization can
be applied later to non-linear studies with some con"dence.

Consider the system shown in Figure 9, which shows the lumped-parameter model from
the continuous system in Figure 1. The mass blocks connected to linear springs are placed
on the moving belt. There are frictional forces between the mass blocks and the moving belt.
In this model, eachmass block represents not only a lumped mass, but also a discrete elastic
mass which can contract and elongate based on the Poisson e!ect due to the forces exerted
around the mass. Since the normal expansion is restricted as shown in Figure 9, the
contraction and elongation in#uence the normal load, which causes the variation of the
friction forces. The equation of motion for undamped ith mass is written as

mxK
�
(t)#k�!x

�	�
(t)#2x

�
(t)!x

��
(t)�#f

�
(t)"0, (50)

wherem is the mass of each mass block, k is the spring sti!ness, x
�
(t), x�

�
(t), and xK

�
(t) represent

the displacement, velocity and acceleration of the ith mass, respectively, and f
�
(t) is the

friction forces on the ith mass. Here the mass and sti!ness are lumped from the evenly
distributed system. Let us include Poisson ratio e!ect. Then the friction force is

f
�
(t)"�N

�
(t)"�[N

�
#�k�x

�
(t)!x

�	�
(t)�], (51)

where � is the friction coe$cient and N
�

is the normal load on each block, which is
a negative constant value (N

�
(0), andN

�
(t) is the resultant normal load including Poisson

ratio e!ects (N
�
(t)(0). Thus, the undamped equation of motion for the ith mass

block is

xK
�
(�)!(1#��)x

�	�
(�)#(2#��)x

�
(�)!x

��
(�)#�N

�
/k"0, (52)

where �"�
	
t, ��

	
"k/m and the time derivative ( ) ) denotes �/�� . This is a di!erence

equation of motion of the continuous system in equation (3).
Consider the "xed boundary condition of

x
�
(t)"x

��
(t)"0,

dx
�
(t)

dt
"

dx
��

(t)

dt
"0. (53a, b)

The equation of motion for the undamped system is expressed by

MxK �Kx"f0 , (54)
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where

M"I, K"

2#�� !1 0 2 0 0

!(1#��) 2#�� !1 2 0 0

0 !(1#��) 2#�� 2 0 0

2 2 2 2 2 2

0 0 0 2 !(1#��) 2#��

,

(55a, b)

f0"!�N
�
/k [1, 1,2, 1]�. (55c)

The matrix I denotes an identity matrix. The sti!ness matrix K is non-symmetric due to the
e!ect of friction and Poisson's ratio. The eigenvalues for the dynamic system are evaluated
with respect to the static equilibrium. Thus, the eigenvalue problem is represented by

�M�"K�. (56)

Since KOKT, the orthogonality relations obtained from the symmetric properties are no
longer valid. Furthermore, the expansion theorem derived from the symmetric relations
can-not be applied to decompose any arbitrary vectors in terms of a set of eigenvectors.

Let us brie#y review the general eigenvalue problem, which covers the non-symmetric
properties in equation (56), and then return to the problem of interest. The transposed
eigenvalue problem associated with equation (56) has the form

�M�"KT�. (57)

The eigenvalues of equation (57) are the same as those of equation (56). On the other hand,
the eigenvectors of equation (57) are di!erent from those of equation (56). Consider two
distinct solutions of equations (56) and (57). These solutions satisfy the equations


�
M�

�
"K�

�
, i"1, 2,2, n (58)

and


�
M�

�
"KT�

�
, j"1, 2,2, n. (59)

Equation (59) can also be written in the left eigenvector form as


�
��

�
M"��

�
K, j"1, 2,2, n. (60)

Multiplying equation (58) on the left by ��
�

and equation (60) on the right by �
�
and

subtracting one result from the other, one obtains

(
�
!

�
) ��

�
�
�
"0, (61)

so that for distinct eigenvalues

��
�
�

�
"0, 

�
O

�
, i, j"1, 2,2,n. (62)

This means that the left eigenvectors and right eigenvectors of the system corresponding to
distinct eigenvalues are orthogonal. It should be stressed that the eigenvectors are not
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Figure 10. Trajectories of the eigenvalues versus friction coe$cient � in the undamped, lumped-parameter
model.

ELASTIC ROD WITH FRICTION 425
mutually orthogonal in the same ordinary sense as those associated with the Hermitian
matrix. Indeed, the two sets of eigenvectors �

�
and �

�
are biorthogonal.

The fact that the eigenvectors �
�
and �

�
are biorthogonal enables an expansion theorem

for the general case. Assuming that any vector can be represented by an in"nite sum of
eigenvectors, there is a choice of expanding any arbitrary n-vector x in terms of the
eigenvectors �

�
or �

�
. For example,

x"�q, (63)

where q"[q
�
, q

�
,2, q

�
]� is the vector of associated coe$cients and � is a modal matrix.

Thus, the coe$cients are obtained by

q"�Tx, (64)

where � is the adjoint modal matrix.
Similarly, an expansion in terms of the eigenvector �

�
has the form

x"�r, r"�Tx, (65)

where r"[r
�
, r

�
,2, r

�
]� is the vector of coe$cients associated with �

�
. This procedure,

which treats the non-symmetric eigenvalue problem in the lumped-parameter system,
corresponds to the non-self-adjoint eigenvalue problem in the continuous system discussed
in the previous sections.

Let us return to the problem of interest. Figure 10 shows the numerical results of the
eigenvalues by changing the friction coe$cient �, which is assumed to be constant with
respect to the relative speed. The calculated eigenvalues can also be compared to the exact
eigenvalues of the continuous system, shown in Figure 8.

As � increases the frequencies simply increase and no destabilizations are found in
Figure 10. This result shows a close approximation to the exact eigenvalues of the
continuous system (Figure 8). Compared to the exact eigenvalues, the eigenvalues obtained
from the lumped-parameter model are usually underestimated. There are no contradictory
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results in evaluating the approximate eigenvalues in the lumped-parameter model since the
numerical method used in this study (MATLAB) utilizes an adjoint property in evaluating
the eigenvalues. We can expect a numerical analysis using such an algorithm to generate
reliable results.

Figure 11 shows eigenvectors corresponding to the three lowest frequencies. These results
show a close approximation to the exact eigenfunctions obtained from the continuous
model in Figure 4.

8. CONCLUSION

The discretization of a one-dimensional continuous system with distributed sliding
contact under "xed boundary conditions and a constant coe$cient of friction was
investigated. A partial di!erential equation of motion was established and its exact solution
was presented. The exact solution shows that the undamped elastic system under "xed
boundary conditions is neutrally stable when the coe$cient of friction is a constant. An
eigenvalue problem in this non-self-adjoint system was shown and its solution was provided
with approaches based on both the non-self-adjoint eigenvalue problem and the eigenvalue
problem with a proper inner product. A technique for choosing a proper inner product
which reveals self-adjointedness was reviewed as well. Di$culties in evaluating the
approximate eigenvalues can be overcome with the help of the proper inner product.

A contradictory result between the exact solution and the assumed-modes
approximation in evaluating the eigenvalues was shown as a cautionary example. In this
case, non-convergence of the assumed modes method can be easily detected. Projection of
assumed modes with the proper inner product led to close approximations of the exact
eigenvalues.

The lumped parameter discretization method generates reliable estimates of eigenvalues,
modal functions, and stability. So we can apply that discretization to further non-linear
analysis with better con"dence.
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With thorough understanding of the proper discretization of this system, further work
can proceed. Topics of future study include non-linear stick-slip responses, re"nements of
friction characteristics, and boundary conditions. E!ects of non-linear friction
characteristics and boundary conditions on the system stability remain as a topic of future
study.
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